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We compare four different techniques for the numerical integration of ordinary differential
equations, and their performance on two initial value problems which are timelike geodesics
around a rotating black hole.

1. INTRODUCTION

Black holes are now an accepted part of theoretical astrophysics. Because there is
much support for the “no-hair” conjecture, that any physically existing black hole
will be a member of the four-parameter generalised Kerr—Newman family of solutions
to Einstein’s equations [1-3] their geodesic structure has been much studied [4]. For
astrophysical purposes, the timelike geodesics are of greatest importance, since many
accretion models assume geodesic motion of the infalling matter, and the null
geodesics are also needed in order to follow the propagation of radiation out to
distant observers. Spacelike geodesics—the paths that would be followed by
tachyons, if they exist—are used to help to elucidate the structure of the spacetime,
particularly with reference to analytic continuations and “wormholes” (see, e.g.,
Fuller and Wheeler [5] and Brigman [6]). Because of the complexity of the
differential equations governing the geodesic paths in this metric [4], most analysis
has concentrated on various specialisations or particular symmetries, and the
calculation of a general trajectory requires numerical integration.

After the equations are repeated for convenience, their calculational form is
optimised. Possible numerical methods are discussed, and then compared by using
two representative timelike tracks. All calculations were performed on an
IBM 370/165 at the University of Cambridge.
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2. THE EQUATIONS AND THEIR CALCULATIONAL ForM
In the coordinate system ¢, r, 6, ¢, generally known as the Boyer-Lindquist coor-

dinate system (after Boyer and Lindquist [7]), the metric of the generalised
Kerr—Newman solution is

z in’
ds* == dr' + 2a6* + 22 O ladi— (7 + a®) dg]?
A 2 2
_7[dt~asm fdg)?, 1)

where Z=r+a’cos’0, d=r*—2Mr+a*+ Q>+ P>, and M, a, Q and P are the
hole’s mass, specific angular momentum, electric charge and magnetic monopoie
moment. Throughout, we use geometrical units with G =c¢ = 1. A complete set of
first integrals exists for the geodesics:

Z*F =R = [E(r* + a*) — a® — eQr]* — A(m*r* + K),
Z7'¢* = 0 = K — m*a* cos* 6 —sin~? §[Ea sin> § — & + eP cos )%,

2 2 2
z¢'=¢[sin-20—%]+a5[r +4a —1]~e[gf“—+fc—os—0], @)

A4 A sin’ g
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Zi=E [S%—azsin20]~a¢[r +a ~1]
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There are four constants of the motion: m, the mass; E, the energy at infinity; @, the
azimuthal angular momentum; and K, the generalisation of the total angular
momentum; in addition to the particle’s charge, e. The dot represents differentiation
with respect to an affine parameter, A. For numerical work, the appearance of squares
in the equations for 7 and § means that the following second derivatives are required:

Z%=[E(r’ + a’) — a® — eQr|[2rE — Q] — [m*r* + K]}[r — M| — m*rA — FZZ,

2 = (m* — E*) a* cos @ sin 6 + eaEP sin 6 3)
+ sin~? @(eP cos O — P)(eP — P cos §) — 6ZZ.

These equations are valid directly for timelike paths with m* >0 and for spacelike
tracks with m® < 0, and also for null geodesics with m*> =0 by setting m=e =0,
@ =1 (essentially adjusting the affine parameter), and relating E and X to the impact
parameters. The affine parameter A can be normalized to be the proper time 7 for
ordinary massive particles.
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It is probable that an astrophysical black hole will be rotating, but without charge
and without a magnetic monopole moment (particularly since this latter does not
appear to exist in nature). In addition, the environment will probably be electrically
neutral. For this case, we specialise to e=Q@=P=0. This leads to some
simplifications, which are most marked in the equations

AZ¢ = B(Z — 2Mr) sin~? 6 + 2MraE,

AZf = E|Z(r* + a®) + 2Mra’ sin’ 0] — 2Mra®. )
These equations construct a geodesic by its affine parameter; i.e., they follow a
particle in its own proper time. For many-body calculations of a bundle of particles,
the viewpoint of the observer-at-infinity must be taken, and this means following the
evolution in intervals of the coordinate time 7. In addition, for single particles the use
of coordinate time concentrates computing power at the parts of the trajectory closer
to the hole, because of time-dilation. When stepping in proper time, the coordinate
jumps near the event horizon become larger and larger, leading to inaccuracies. Our
primary astrophysical concern is with the black hole exterior, and so, using a prime
to denote d/dt, the new set of equations is given from the old set by

M=1/i, ¢ =g/, O=6/i, r¥=rl

r=F—)r, 0 =(—i8)r. ©)
The derivatives 7 and £, which latter is derived from ¢ as # and # were derived from 7
and 6, are now necessary intermediate functions. It is not, of course, essential to keep
track of the affine parameter A, but the extra work involved is small and the infor-
mation is useful.
It is easiest to reduce the system of equations (5) to a canonical set of six, first-
order, coupled, nonlinear ordinary differential equations

Y= i, ), i=1,6, (6a)

with the identifications

(6b)

although there is in fact no explicit dependence on ¢. It might seem better to calculate
r' and & from the first integrals of the motion, using r” or #” only to cope with the
points where r' or & approach zero. Unfortunately, it turns out to be virtually
impossible to monitor the turning point sufficiently well and to compute accurately
enough in this way. Since we need a general method of solution it is more
straightforward, just as accurate, and only a little slower, to use the full set of six
equations (6). The first integrals can be used as checks on any errors, if desired.
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The encoding of the set (6) for computer use is further simplified by two
normalisations and some analytic cancellations. The normalisations are M = 1, so
that the coordinates, hole parameters, and constants of the motion are in units of the
hole’s mass, and m? = +1 so that the constants of the motion are further reduced to
values per unit particle mass. The analytic cancellations arise because 7, § and { are
all derived from first derivative equations containing a factor of 1/Z, and the terms in
Z thus cancel out. Furthermore, the event horizon of the black hole is defined as the
shell where A4 =0, which leads to problems because of the appearance of factors of
1/4. As many of these as possible are removed, for example, by calculating ¢’ as

(49) + (49).

3. NUMERICAL METHODS

(a) Introduction

The initial value problem defined by the set of coupled, first-order ordinary
differential equations (6), with appropriate initial conditions y'(¢,), belongs to a class
whose solution has occupied a great deal of time and analysis. All the numerical
methods currently of use are of the type known as discrete variable methods. Simple
methods use a constant stepsize, but generally it is more efficient to allow it to vary.

A good introduction to the theoretical basis of the numerical techniques is the
book edited by Hall and Watt [8]. Comparisons of the methods, and of practical
implementations of the methods, have appeared often, but particularly useful articles
are those by Enright and Hull [9] and by Shampine et al. [10]. These references do
not mention Taylor series methods (see below).

The best method for any particular problem depends on the behaviour of the
equation set over the region of interest, and on the attributes required of the solution
with regard to accuracy and speed. All the methods considered produce an estimate
of the expected error in the solution at each step, and adjust themselves to keep this
error below a specified value. Most tests use a mixed relative—absolute error criterion,
where the error is controlled so that |Estimated error| < Maximum relative error
allowed X |Solution| + Maximum  absolute error allowed. The techniques
implemented here all set the allowable relative and absolute errors to the same
tolerance. Unfortunately, such local error control at each step does not prevent the
accumulation of inaccuracies so that the error at the end point may be unacceptably
large. Despite progress towards methods which allow global error control, currently
the best way to check the solution is to solve the same problem with different allowed
local errors and to compare the answers obtained. Since more stringent limits
increase the computer time required, the loosest constraint compatible with the
required accuracy should be used.

Although general comparisons are useful guides to the relative merits of the
available methods, choosing the best way to solve a given problem must involve test
runs on a selection of initial conditions, two of which are presented below. For these
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comparisons, all the routines were pre-compiled and stored as load modules in a
FORTRAN subroutine library. This was to eliminate overhead and to make the
comparisons fairer, since some methods involve many more lines of program than
others. For convenience, the indices on the system y” = fi(t, ') will be dropped.
Recall that y, is the approximation to y(¢,).

(b) Runge—Kutta (R) Methods

The Runge-Kutta routine considered was an explicit five-stage, fourth-order
method due to Merson [11] (see also [8, 12]), which attempts to control the local
error by varying the local steplength. It was taken from the N.A.G. library of
numerical methods.

It is unfortunate that a better method, such as a Runge—Kutta—Fehlberg approach,
was not readily available at the time of this work, because the Merson algorithm is
known to be unreliable and inefficient for nonlinear problems [9]. However, it sill
provides some basis for comparisons via DASCRU (a Merson method), RK4 and
RKF4 of [9], and RKF4 and RKF45 of [10]. In general, these methods were a priori
not expected to be highly competitive, because of the complex and expensive
derivative evaluations required by Egs. (2), (3), and because of the requirement of
fairly high accuracy. It was therefore felt not to be worth implementing a better
approach solely for the current study.

(c) Adams (A) Method

This was an Adams—Bashforth—-Moulton predictor—corrector method of variable
order, again taken from the N.A.G. library. It uses a divided difference representation
of the required polynomials, and adjusts them according to the prescription of Krogh
[13]. The error is controlled by changing both the stepsize and the order. For further
details of this approach, see, e.g., [8, 10, 12, 14].

(d) Taylor Series (T) Methods

The Taylor series

At
y(tn+l):y(tn)+Atn+ly,(tn)+_'2l,tl_y”(tn)+“' (7
gives what must be conceptually the simplest way to advance the solution from ¢, to
t,,:- By truncating and approximating y(¢,) = y,, we get the further approximation

At a6
yn+1=yn+Atn+lf;z+—2"_'ﬂf;+‘“+";T+l :IS)' (8)
The method can be described as an application of the process of analytic
continuation. One generates a sequence of Taylor expansions which are valid
successively in overlapping intervals, the totality of which intervals completely covers
the desired domain of integration.
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Assuming appropriate differentiability, such formulae are self-starting and allow
easy change of stepsize A¢, and of the number of terms used, s. The biggest problem
faced by this idea is obtaining the higher derivatives of f, which is why most works
ignore the Taylor series approach. However, it has been shown that reducing the
original equations to a certain canonical form enables the automatic derivation of
recurrence relations from which the unknowns may be calculated [15, 16]. This
method has been implemented as an algebraic manipulation system [17], which takes
as input the differential equations to be solved, and produces as output the
FORTRAN subroutines to solve them. This system should be more widely
disseminated.

(e) Extrapolation—The Gragg—Bulirsch—Stoer (G) Method

The basic idea of extrapolation routines is fairly straightforward. Evaluate an
approximation to the value y(¢,,,) by using a simple rule and a given stepsize h,.
Evaluate further approximations using a sequence of decreasing stepsizes h,. By
assuming the form of an interpolating function to these values, it is possible to
extrapolate to a better answer. Thus, combining results of low accuracy yields a
highly accurate approximation. The particular assumption required is the functional
form of the error, F(h)=y,. 4 — ¥(tys,)- The details of this method (first
suggested by Richardson' (18, 19]) are rather complex, and are justified by a great
deal of analysis. It is much like a Runge-Kutta method of variable order.

The routine used is due to Prof. Dr. R. Bulirsch, and was kindly provided by Dr.
S. Aarseth. It uses a modified midpoint rule

y(t;h)z%{yn+yn-l +hf(t’ yn)}’

9)
yn+2=yn+2hf(tn’yn)

and an error estimate which is a rational function (the division of two power series in
k). The sequence k; is taken to be k, X (1,3, 1,1, %, 5,...). The details are in [20-22].
The disadvantage of this particular routine is that, whilst adjusting the time-step, it
outputs values at points which may not be the desired step-points. It must be (gently)
coerced by the driving program to provide the desired evenly spaced results. This
negates one of this method’s greatest advantages.

' Lewis Fry Richardson {1881~1953) is an interesting and eccentric figure who devoted much of his
life to studying armed conflicts (“Arms and Insecurity; a Mathematical Study of the Causes and Origins
of War,” ed. N. Rashevsky and E. Trucco, and “Statistics of Deadly Quarrels,” ed. Q. Wright and C. C.
Lienau, both published by Boxwood Press, Pittsburgh, 1960), but along the way invented the
extrapolation method, started the mathematical study of the weather, did fundamental work on
turbulence (note the “Richardson number” in fluid dynamics), and did work on what are nowadays
called fractals. See also B. B. Mandelbrot, “Fractals: Form, Chance and Dimension,” Freeman, San
Francisco, 1977.
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4. Two TeEST PROBLEMS—RESULTS

Since all quantities are normalised to the hole’s mass and the particle’s mass, no
units will be quoted. Thus, for example, “r =6.7" is assumed to mean r=6.7M in
geometrical units, and “E = 0.95” means E/m = 0.95M. (Remember that we have
already set G=c=1.)

Available analytic orbit solutions do not in general make good test material,
because they nearly all specialise to constancy of some coordinate or other and so are
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not truly three dimensional. Thus, for example, orbits in the equatorial plane of the
Kerr solution are very well studied. Where the relevant coordinate is constant
because its derivative is identically zero, the numerical method cannot fail to be
correct, and where the derivative is zero by cancellation, the solution is limited by
computer round-off errors and not by the efficacy of the technique. The accuracy of
the numerical solutions to the test problems is therefore decided by comparison with
a computer-produced “true” solution. This “true” path was calculated, with the
benefit of early work on the problem, by using the Adams method with the local error
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Gragg-Bulirsch-Stoer, R: Runge-Kutta, T: Taylor series. Note that the straight lines connect only two
data points, being used solely to reveal the trend, and do not represent the functional form of the depen-
dence.



BLACK HOLE GEODESIC EQUATIONS 303

tolerance set at the round-off error level of the computer. It should therefore be as
accurate as the machine permits, and, even though it is difficult to verify, it does
provide a uniform standard for the performance of the different methods. The
behaviour of the errors during the evolution of the solutions gave additional,
retrospective, support for the “true” orbits.

The two problems presented here were chosen from the set studied as being
representative of the important difficulties. The first path considered is a retrograde
orbit in the equatorial plane of the a = 0.5 Kerr hole. This spirals in very slowly from
r = 6, then rapidly plunges most of the way to the event horizon at r, = 1.866, being
forced into direct motion by the “dragging of inertial frames” effect. This much-
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FiG. 3. Central processor time (IBM timer units, X10™*) taken by each method for test one as a
function of coordinate time (X107?). (a) Local error 107, (b) local error 107" A:
Adams-Bashforth—Moulton, G: Gragg-Bulirsch-Stoer, R: Runge-Kutta, T: Taylor series.
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discussed result of General Relativity can be found in, e.g., [23]. The particle hovers
interminably just outside the point of no return. Proper time effectively stops
advancing, but the azimuthal coordinate ¢ continues to increase at just the rate given
by £2=a/2r,=0.134, which is the angular velocity of the hole. This nicely
demonstrates the freezing of the motion to be expected when stepping in coordinate
time.

The second orbit used is a bound orbit that neither falls in nor escapes, around an
a = 0.5 hole. The path is started at r = 6 in the equatorial plane, and it loops around
and out of this plane—a fully three-dimensional track.

These two test trajectories were run through each of the four integration methods
twice, with local accuracy requests of 10~° and 107'°. The deviation from the
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Fi1G. 4. Central processor time (IBM timer units, X10 *) taken by each method for test two as a
function of coordinate time (X107%). (a) Local error 107% (b) local error 107'° A:
Adams—Bashforth-Moulton, G: Gragg—Bulirsch-Stoer, R: Runge-Kutta, T: Taylor series.
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comparison path was plotted as a function of time, in order to understand better the
behaviour and the accuracy of the systems, up until ¢ = 400 with output at intervals
At =5 for problem 1, and up until £ = 2000 with output every 4¢ = 10 for problem 2.
For problem 1, the curves either change very little, or deviate wildly, beyond ¢ = 400,
except for the extrapolation (G) routine, which failed at ¢ = 385 (see later discussion).
At the tighter error request, the G routine was stopped at t = 190 for using too much
computer time.

Within these ranges, the maximum error in the four variables r, 6, ¢ and 4 is
plotted against the local error request in Figs. 1 and 2. This gives an indication of the
accuracy of the integration technique in the region where it successfully handled the
problem. It is very important to remember that there are only two data points for
each line in these figures, and that these points have been connected by a straight line
in order to reveal the trend more clearly. These straight lines do not represent the
functional form of the dependence of global error on local error request.

Figures 3 and 4 show the central processor (CPU) time taken for the calculations
by each routine, as a function of coordinate time . The time units are “IBM 370
timer units,” of which there are said to be 38,400 in one second. These curves show
the variation of CPU requirement over different parts of the orbit. There has been no
attempt at any normalisation related to the actual accuracy obtained.

5. DISCUSSION

(a) Test 1

At the lower accuracy request, beyond t=400, the Runge—Kutta (R) solution
allowed the particle to bounce back out of the black hole, but this routine performed
much better at higher accuracy. The G routine produced a very interesting (and
undocumented) feature. It attempts to estimate the most efficient steplength for the
next integration region by considering the behaviour of the approximations during the
current region. This estimated value is often larger than the region itself. The ability
to travel over large regions in one leap, which is one of the greatest advantages of
extrapolation methods, is not used here because the solution is required at fixed,
evenly spaced, and quite short, intervals. However, as proper time stopped and very
little was happening, the G routine reduced its estimated timestep towards zero,
finaily setting it as identically zero, requesting an infinite number of sub-intervals,
and giving up in disgust when the machine refused to allow such an unreasonable
number. This fit of pique seems to be related to the development of mild stiffness.

An extrapolation code repeatedly integrates over the interval with successively
smaller stepsizes. If one stepsize is outside the stability region, the next moves closer
to or into this region, but takes more steps and so allows more growth of error. Thus
stiffness, which reduces the size of the stability region, “chases” the program into
smaller and smaller stepsizes, finally provoking it into surrender. This interpretation
is supported by the behaviour of the steplength for the Adams—Bashforth-Moulton
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(A) method. Since this steplength is adjusted solely by halving or doubling, it is
possible by doubling to move from inside the region of relative stability to outside the
region of absolute stability. This leads to rapid error growth and halving of the
stepsize, and the process repeats. These rapid jiggles are plainly visible in the resuits.
The stiffness must be mild, because the A method was more accurate, and much
faster, than a specialised method which uses backward differencing to cope with the
stiffness. (This stiff routine performed so badly overall that its results have not been
included.)

The Taylor (T) and G methods are globally considerably more accurate for the
same local error tolerance. The G method was actually globally within, or close to,
the local error limit (until it failed as discussed above). The T routine is remarkably
good, generally getting errors two orders of magnitude smaller than those of the A
system (probably the most widely used), and taking only twice the computer time.

(b) Test 2

Much less of note happened during this test, as the orbit is smooth, and a
reasonable distance away from the hole. At low tolerance, the R routine copes very
well, although it cannot match the accuracy of the G method. At high tolerance,
however, the G routine is ideal, being both fast and very accurate. No problems with
stiffness here. The CPU time taken by the R routine increases out of all proportion to
its gain in accuracy. The A routine performs as well as expected.

6. CONCLUSIONS

Principally, we require a certain accuracy over the entire integration for the
smallest computer time. Acceptable accuracy is not obtained by specifying this limit
for the local error control, and different methods get different global precision for the
same quoted local precision.

The R technique is not sufficiently reliable for all sets of initial conditions, nor is it
sufficiently fast at high accuracies. The first difficulty, though not the second, would
probably be cured by a more sophisticated approach of the sort noted earlier. Such
an improved routine would therefore be a “best buy” for quick, low-accuracy results.
The T routine is distinctly slower than the A routine for only slightly better accuracy.
It is, however, a very robust method which deserves more attention in differential
equation studies. Note also, from Figs. 3 and 4, that it often extrapolated from known
results at negligible further cost. The G method cannot cope with the slight stiffness
which can arise, and so on the basis of these two typical tests, the A routine emerges
as the favourite.

However, if we should be interested solely in astrophysical processes in the black
hole exterior, then particles approaching the hole would be deemed captured, and the
integration could be terminated before the G routine fails. A major reason for the G
routine’s poorer performance is the complexity of the derivative evaluations, since
each step requires many more of them than used by the A method, and so the G



BLACK HOLE GEODESIC EQUATIONS 307

routine was severely handicapped by being forced to produce values at relatively very
short intervals, ignoring an extrapolation method’s ability to step accurately over
much larger regions. Some tests were carried out with each method “given its head,”
and in these the G program became very competitive, although the large stepsizes
made for a very angular “route map.” The T program also improved its relative
performance. The extrapolation method should be strongly considered, not only for
its great accuracy—often better at the less stringent request than the other routines at
the tighter constraint—but also because it requires much less storage than the A
method, which has to pass the divided difference tables between steps. It might also
be worth investigating the most efficient error-control strategy.
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